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Abstract—Exoskeleton-assisted home-based rehabilitation
plays a vital role in the upper limb rehabilitation of stroke patients
in early stage. The surface electromyography (sEMG)-based
control can facilitate friendly interactions between individuals
and rehabilitation exoskeletons. The exoskeleton can also meet the
requirements of home-based rehabilitation, including affordability,
portability, safety, and active participation. Although various
systems have been proposed to enhance upper limb training,
few studies have addressed the inter-subject variability of
sEMG signals, which limits the generalization capability of the
intention estimation model. In this letter, a subject-independent
continuous motion estimation method combining convolutional
neural networks (CNN) and long and short-term memory
(LSTM) is proposed and applied to a home-based bilateral
training system. The sEMG-driven CNN-LSTM model builds the
relationship between sEMG signals and continuous movements.
To verify the effectiveness of the CNN-LSTM model in achieving
subject-independent estimation, the offline estimation under the
backpropagation neural network, CNN, and CNN-LSTM are
compared. Moreover, the online intention estimation and the
real-time control are performed, and the estimation angle error
and time delay are controlled at approximately 10° and 300
ms, proving the feasibility of the subject-independent estimation
method and its availability in the upper-limb rehabilitation system.

Manuscript received 22 February 2023; accepted 24 July 2023. Date of
publication 9 August 2023; date of current version 28 August 2023. This letter
was recommended for publication by Associate Editor D. Paez-Granados and
Editor A. Peer upon evaluation of the reviewers’ comments. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61703305, in part by the National High-Tech Research and Development
Program through 863 Program of China under Grant 2015AA043202, and in part
by SPS KAKENHI under Grant 15K2120. (Corresponding author: Shuxiang
Guo.)

This work involved human subjects or animals in its research. Approval of all
ethical and experimental procedures and protocols was granted by Institutional
Review Board (IRB) of the Faculty of Engineering and Design at Kagawa
University under Application No. 01-011, and performed in line with the
Declaration of Helsinki.

He Li, Dongdong Bu, and Hanze Wang are with the School of Life Science,
Beijing Institute of Technology, Beijing 100081, China, and also with the Key
Laboratory of Convergence Biomedical Engineering System and Healthcare
Technology, The Ministry of Industry and Information Technology, Beijing
Institute of Technology, Beijing 100081, China (e-mail: lihe@bit.edu.cn;
budongdong@bit.edu.cn; wanghanze@bit.edu.cn).

Shuxiang Guo is with the Intelligent of Mechanical System Engineering
Department, Kagawa University, Takamatsu 761-0793, Japan, and also with the
Key Laboratory of Convergence Medical Engineering System and Healthcare
Technology, Ministry of Industry and Information Technology, Beijing Institute
of Technology, Beijing 100081, China (e-mail: guo.shuxiang@kagawa-u.ac.jp).

Masahiko Kawanishi is with the Department of Neurological Surgery, Fac-
ulty of Medicine, Kagawa University, Takamatsu 761-0793, Japan (e-mail:
mk@kms.ac.jp).

Digital Object Identifier 10.1109/LRA.2023.3303701

Index Terms—Intention recognition, rehabilitation robotics,
deep learning methods, model learning for control, motion control.

I. INTRODUCTION

H EMIPARESIS of the upper limb is a common sequela of
stroke, which occurs in about 85% of patients in the early

stage. Particularly, rehabilitation training is most effective in the
first three months after the onset of stroke [1]. Therefore, rehabil-
itation training in the early stage of stroke is vital. But the upper
limb rehabilitation training for hemiparetic patients requires
long-term training under the guidance of experts [2], which
is challenging. Long-term professional rehabilitation training
requires families to bear high costs while putting forward further
requirements for the workload of physiotherapists. The inability
to bear high costs and the lack of medical resources eventually
lead to the interruption of training, resulting in the inability to
ensure timely and effective treatment and missing the optimal
recovery period.

In recent years, robotic exoskeleton-assisted devices have
been developed to improve the functional movements of hemi-
plegic patients, which can provide a quantitative and objec-
tive evaluation for the rehabilitation process [3]. Furthermore,
exoskeleton-assisted rehabilitation training can improve the mo-
tivation of hemiparesis patients to participate in rehabilitation
more effectively than traditional training. Bilateral rehabilitation
training protocol is considered an effective strategy for the
rehabilitation of hemiplegic patients [4], in which the intact
limb drives the affected limb to carry out synchronous motions.
Intention recognition of intact side movement can be divided
into indirect recognition based on inertial and force sensors, and
direct recognition based on physiological signals. As a physio-
logical signal that is easy to collect, surface electromyography
(sEMG) signals have been widely used in exoskeleton devices.
The sEMG-driven motion control can be an optimal way to
achieve harmonious interaction between users and rehabilitation
robots [5], [6], [7].

Many different sEMG-based rehabilitation systems have
been developed recently [8], [9], [10], [11], [12], [13], [14].
Several researchers have estimated muscular torques (or motion
angles) from sEMG using a musculoskeletal model. These
approaches have been applied to the upper limb [8], [9] and
lower limb [10], [11] exoskeletons. Buongiorno et al. [8]
proposed a linear optimization method to adapt a simplified
sEMG-based neuromusculoskeletal model to a specific user. Liu
et al. [9] presented a bilateral rehabilitation system that enables
real-time stiffness adjustment through sEMG-based stiffness
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control. As an alternative to the musculoskeletal model-based
method, some research groups have proposed using machine
learning to establish the relationship between sEMG and
muscular torque (or motion angles) [15], [16], [17]. Yang et al.
[15] proposed an sEMG-based bilateral training system in
which offline and online experiments were designed to verify
the rehabilitation training system. Xiao et al. [16] realized
the estimation of continuous angles from sEMG by utilizing
multiple time-delayed features and random forests. Li et al. [17]
combined multisource domain adaptation with a shallow neural
network to continuously estimate elbow joint movements.

However, there are several limitations to the above systems.
First, the high cost of traditional sEMG acquisition devices, the
tedious steps of electrode placement, and the inconvenience of
donning and doffing the sEMG sensor make them unsuitable
for home-based rehabilitation [18]. The second reason has to do
with the inter-subject variability of sEMG. Considering the inter-
subject variability, Yang et al. [15], Li et al. [17], Trigili et al.
[19], and Guo et al. [20] attempted various methods to mitigate
or eliminate it. Yang et al. [15] utilized common time-domain
and frequency-domain features to construct subject-independent
models. Trigili et al. [19] selected user-independent features with
the aid of the information theory tool. Li et al. [17] extracted
user-invariant features by MDA and subsequently achieved the
inter-subject independent continuous estimation of elbow joint
movements. However, these approaches have their limitations.
Yang et al. [15] and Trigili et al. [19] relied solely on traditional
time-domain and frequency-domain features, which have not
significantly addressed the issue of inter-subject variability. The
methods of Guo et al. [20] and Li et al. [17] are offline but cannot
be applied to real-time control. Therefore, the development of
an sEMG-driven upper limb exoskeleton rehabilitation system
that is affordable, portable, and subject-independent is an urgent
task. This system can be applied in home-based rehabilitation
for patients with upper limb hemiplegia, through which motor
function can be improved.

This study introduces an sEMG-driven bilateral training sys-
tem using a gear-driven powered upper limb exoskeleton device
(GP-ULED) for upper limb rehabilitation. The rehabilitation
system can estimate the continuous movements of the intact
side by sEMG and then provide the symmetrical movements
in sync to drive the affected side in real time by GP-ULED.
For the subject-independent prediction of elbow joint angles, a
CNN-LSTM which can extract the spatial and temporal features
is built using sEMG images in the offline stage. Then it can be
applied to online estimation and real-time myoelectric control.
The experiments on 10 healthy subjects verify the feasibility
of the proposed system. Results, including the offline result
comparison and real-time control performance, are presented
and discussed, indicating that the proposed rehabilitation system
has the potential to be applied in upper limb training for stroke
patients. To sum up, the main contributions of this letter are
as follows:

1) Considering the inter-subject variability of sEMG, CNN-
LSTM is adopted to extract transferable features among
different subjects for subject-independent estimation of
continuous movements.

2) Based on the CNN-LSTM model, online intention es-
timation and real-time control are implemented for the
home-based upper limb rehabilitation system.

The rest of this letter is organized as follows: Section II de-
scribes the involved methods in detail, including the exoskeleton

Fig. 1. Overview of subject-independent estimation of continuous movements
using CNN-LSTM for home-based bilateral upper limb rehabilitation system.

Fig. 2. Upper limb exoskeleton device. (a) Lateral view (b) front view.

structure and control hardware, the sEMG measurement device,
the embedded control system, the offline data acquisition and
preprocessing of sEMG, the data set construction, the CNN-
LSTM modeling and angle estimation, and evaluation criteria, in
turn. The results of the offline and online experiments are shown
in Section III. Section IV presents the discussion. Section V
serves as the conclusion of this letter.

II. METHODS

Fig. 1 presents the overall framework of the proposed home-
based bilateral rehabilitation system for upper limb training.
Bilateral training is a rehabilitation strategy in which the intact
limb drives the affected limb to carry out symmetrical move-
ments in sync, assisted by the robot. In the proposed system, a
gear-driven portable exoskeleton is utilized as the hardware plat-
form to achieve sEMG-based real-time control for robot-assisted
rehabilitation training. The sEMG-driven subject-independent
estimation of continuous movements is realized through a CNN-
LSTM model with sEMG images as input.

A. Exoskeleton Structure and Control Hardware

Overview of the GP-ULED is depicted in Fig. 2. It has two pas-
sive degrees of freedom (DoFs) at the shoulder, which are shoul-
der adduction/abduction and shoulder flexion/extension, and one
active DoF at the elbow, which is elbow flexion/extension (pas-
sive DoF refers to the rotation resulting from human movements,
active DoF refers to the rotation resulting from the gear-driven
mechanism). The length of the upper arm of the exoskeleton and
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Fig. 3. Myo armband from thalmic labs.

the position of the forearm underframe can be adjusted. To re-
duce structural weight and cost while maintaining accuracy, the
primary exoskeletal frames are 3D printed using curable resin.
It is lightweight and allows for small physical configurations,
providing high versatility to accommodate different users. The
total weight of GP-ULED is only 1.35 kg, which is shared by
two fabric straps (as shown in Fig. 2(b), one around the waist
and one as a shoulder harness attached to the torso).

A gear-driven elbow exoskeleton (shown in Fig. 2(a)) pow-
ered by a brushless motor (EC22, Maxon, Switzerland) serves
as the hardware platform for testing the sEMG-based subject-
independent estimation of continuous movements. The brush-
less motor, coupled with a gearbox (Maxon Planetary Gearhead
GP 22 HP) and a quadrature optical encoder (MR M-512) is
utilized to control the rotation angle of the elbow joint with
the help of gear. The brushless motor is placed along the upper
arm, which reduces the burden on the forearm and minimizes
obstacles. The motor is controlled by a matched motor controller
(ESCON 50/5, Maxon). The two bevel gears are made of 45 steel,
and their gear ratio is 1:2. In addition, the backlash between the
two gears can be reduced by adjusting their positions through
the oblong fixation base of the motor.

B. sEMG Measurement Device

Intention detection based on sEMG is the gold standard for
portable devices [21]. In this study, the Myo armband is used for
sEMG acquisition. The Myo armband from Thalmic Labs (as
shown in Fig. 2(b)) utilizes eight dry sEMG sensors to measure
and record electrical impulses from the user’s muscles. The
sampling frequency of the Myo armband is 200 Hz. Bluetooth
Low Energy (BLE) is its communication mode, which simplifies
wireless connectivity with other devices. Compared with other
sEMG data acquisition devices, the Myo armband is preferred
for its advantages of low cost and ease of use et al. It can be easily
donned and taken off without the therapist and is user-friendly
[22] due to the expandable flex that allows for adjustments
to fit any forearm size (as shown in Fig. 3), and it also has
been applied in rehabilitation [23], [24], [25]. Meanwhile, a
compact inertial measurement unit (IMU, type: JY901, WIT)
is attached to the intact limb to record the target angles. IIC is
used to communicate between the JY901 and the microcontroller
because it can transmit data more reliably than serial ports.

C. Embedded Control System

The control architecture of the GP-ULED is divided into
two modules: high-level and low-level control. The high-level
control is based on an sEMG-driven neural network (CNN-
LSTM) model implemented in MATLAB (2022b, MathWorks).
The low-level control of the exoskeleton and data logging are

Fig. 4. Overall design of the embedded system of the upper limb rehabilitation
exoskeleton.

Fig. 5. Schematic diagram of the offline data acquisition.

executed through an Arduino (Mega 2560), which collects angle
data from the IMU and the PC, respectively. The Arduino
communicates with MATLAB at a baud rate of 115200 bps. The
real-time low-level control is based on an outer position loop and
an inner velocity loop. The servo motor’s Hall sensor provides
information to the servo driver for controlling the motor’s speed.
The servo driver uses feedback information to adjust and achieve
closed-loop control of the servo motor. In the outer position
loop of the bilateral rehabilitation, the control system utilizes the
deviation between the angles of the intact side and the angles
of the exoskeleton motor for proportional-integral-differential
closed-loop control, in which the resulting position error is
transformed into a desired angular velocity. Fig. 4 presents the
overall design of the embedded system of GP-ULED.

D. Data Acquisition and Preprocessing of sEMG

The study involved ten subjects (labeled as Subject 1- Subject
10): five females and five males, with an average age of 25.4 ±
1.38 years (mean ± standard deviation). All participants are
free from skeletal and neurological diseases, and can achieve
a normal range of motion for the elbow joint. All participants
provided explicit written consent to participate in this research.

The diagram for offline data acquisition is presented in
Fig. 5. The sEMG data is collected at a frequency of 200 Hz
using the Myo armband. Since each data acquisition lasted
1 minute, the number of sampling points per subject in each
acquisition is 12000, and each subject repeats the experiment 5
times. The IMU with a sampling frequency of 20 Hz is attached
to the forearm to record the motion angle of the elbow joint,
which is taken as the reference signal to compare with the
estimation results. After completing offline data acquisition, it
is necessary to preprocess the collected sEMG signal because
the raw sEMG is weak and sensitive to noise. The high-pass
filter at 20 Hz eliminates DC offsets and low-frequency noises

Authorized licensed use limited to: Shuxiang Guo. Downloaded on August 29,2023 at 13:16:07 UTC from IEEE Xplore.  Restrictions apply. 



6406 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 10, OCTOBER 2023

TABLE I
PREDICTION TIME FOR A SINGLE-POINT SEMG INPUT (MS)

Fig. 6. Conversion of sEMG signals to sEMG images by the method of sliding
window. P(a,b) represents a segment of sEMG signal from channel b at time a.
Pa represents the sEMG signals from 8 channels.

that could potentially interfere with the sEMG signal. The Myo
armband is embedded with a 50 Hz notch filter that effectively
eliminates power-line interference (50 Hz). The Euler angles
outputted by the IMU are filtered by the embedded dynamic
Kalman filter algorithm embedded in IMU, so there is no need
for any additional filtering processing.

E. Data Set Construction

Since sEMG is a highly non-stationary signal, the sampled
signals should be divided into short time windows to ensure sig-
nal stability. The segment length should be large enough to avoid
degradation of regression performance. However, the segment
size should also be small enough to meet the requirements for
real-time control, which means the sEMG signal should be less
than 300 ms, which includes the window length and processing
time for generating the control command. To certain the time
of generating control commands, the single-point sEMG signal
is used as the input of CNN-LSTM to record the prediction
time. Table I records the prediction time. The sEMG signals
in each channel are segmented using a sliding window with a
length of 250 ms (50 sampling points), which is incremented
by 50 ms (10 sampling points). Based on the above, the number
of sliding windows for each subject in each data acquisition is
1196 (12000-50+10)/10= 1196. Since the ratio of the sampling
frequency of sEMG and IMU is 10:1, the IMU angle signal is
also segmented using a sliding window with a length of 25 ms
and an increment of 5 ms.

In the backpropagation neural network (BPNN), three time-
domain features (integrated absolute value, mean absolute value,
and root mean square) of each channel are extracted to construct
a 24-dimensional feature vector. For the CNN and CNN-LSTM,
the sEMG signals from 8 channels of the Myo armband are
transformed into sEMG images with a size of 50 × 8. Fig. 6
illustrates the conversion of sEMG signals to sEMG images
using the sliding window method.

Fig. 7. Flow diagram of the training and estimation. (a) Offline training (b)
online estimation.

F. CNN-LSTM Modeling and Angle Estimation

Unlike traditional shallow neural networks, deep neural net-
works emphasize the importance of feature learning. That is, the
feature representation of samples in the original space is trans-
formed into a new feature space by layer-by-layer feature trans-
formation so that the prediction can be more straightforward.
The sEMG features automatically extracted and constructed
through the network layer are complete and more comprehensive
than a single feature or a combination of features designed by
artificial rules. Principal component analysis and other factoriza-
tion methods rely on features designed by artificial rules. These
methods only consider the irrelevance among different features
without considering the transferring of features. Recent studies
[26], [27] have shown that deep neural networks are capable of
learning transferable features, producing groundbreaking results
on domain adaptation datasets. The sEMG signals exhibit high
inter-subject variability, and deep neural networks provide an
effective approach to extracting transferable features. Based on
the above, CNN is used for sEMG-based angle estimation.

In addition to the inherent inter-subject variability, sEMG
signals are essentially sequential in nature. Therefore, using a
recurrent neural network (RNN) for regression problems is valu-
able. Compared with RNN, LSTM addresses the issue of gradi-
ent disappearance and gradient explosion during long sequence
training, resulting in better performance for longer sequences.
Although LSTM is effective in processing time-sequential data,
it cannot portray the spatial features of time-sequential data, such
as images. Since sEMG signals are both time and space-related,
LSTM in combination with convolution operation to capture
spatial features is more effective for image feature extraction,
that is, CNN-LSTM [28]. Thus, CNN-LSTM is chosen to predict
the continuous flexion-extension motions of the upper limb
elbow.

The sEMG-based bilateral training consisted of two stages.
The subjects perform continuous flexion-extension motions.
Then the input data of CNN-LSTM can be obtained through pre-
processing, sliding window, and conversation of sEMG images.
Offline training and estimation are used to verify the validity of
the CNN-LSTM model for subject-independent motion recogni-
tion. It also provides a model for online estimation and real-time
control. Only the model with good offline prediction perfor-
mance can be deployed in the online estimation and real-time
bilateral control phases. That is, the online intention estimation
and real-time motor control are based on the model trained in
the offline phase. The details of these two phases are recorded
in Fig. 7.

1) Offline Training and Estimation: The offline training and
estimation (as shown in Fig. 7(a)) are based on the sEMG data
collected offline. In this study, the CNN-LSTM model consists of
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Fig. 8. Schematic of the CNN-LSTM used on sEMG signals.

15 layers: one convolutional layer, two LSTM layers, two fully-
connected layers, and a regression output layer. The specific
neural network model is depicted in Fig. 8. The sEMG images
obtained by the sliding window method serve as the input of
CNN-LSTM, and the estimated angle is the output of CNN-
LSTM. The size of the input layer for the sequence depends on
the size of the sEMG images, and the number of output layer
neurons depends on the number of output variables. Through
CNN-LSTM, the estimated angle signal of elbow movements
can be calculated. To be further applied to sEMG-controlled
human-robot interfaces (HRIs), the sliding window method is
adopted to filter the angle signal.

2) Online Angle Estimation and Real-Time Control of GP-
ULDE: The online angle estimation and real-time control of
GP-ULDE (as shown in Fig. 7(b)) are reliant on the CNN-LSTM
model that has been trained. The GP-ULDE is worn on the
affected side, as shown in Fig. 2. The JY-901 captures the
angle data of the intact side. The participants perform elbow
joint movements according to the same rules as offline data
acquisition. In this stage, sEMG data acquisition, preprocessing,
data set construction, angle estimation, and GP-ULDE control
are all performed in real time. The participants perform the pre-
defined sequence of movements consistent with the offline phase
through the intact upper extremity. The estimation angles can be
calculated in real time through the CNN-LSTM model, and the
whole prediction process is realized in Matlab, which facilitates
high-level control. The estimation results obtained in real-time
are then transmitted to Arduino via serial communication, which
implements the low-level control. Finally, real-time control of
GP-ULDE can be achieved based on the high-level and low-level
control loops.

G. Evaluation Criteria

For quantitative assessment, the evaluation criteria of Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), Sum
of Squares Error (SSE), and Correlation Coefficient (R2) are
adopted. RMSE is the square root of MSE, which is more intu-
itive in terms of magnitude. MAE is the average error between
the estimated values and the target values, as demonstrated in
(1). MAE is utilized to calculate the mean absolute error between
the estimated values and the true values, as shown in (2). SSE
calculates the sum of the squares of the errors between the
estimated values and the target values at each corresponding
point, as shown in (3). R2 is used to measure the fitting effect of
the regression model, as shown in (4), and the closer to 1, the
better the fitting effect.

RMSE =

√
1

N

∑N

i=1
(yi − xi)

2 (1)

TABLE II
PARAMETERS OF BPNN, CNN, AND CNN-LSTM MODEL

MAE =
1

N

N∑
i=1

(yi − xi) (2)

SSE =

N∑
i=1

(yi − xi)
2 (3)

R2 = 1−
N∑
i=1

(xi − yi)
2/

N∑
i=1

(xi − ȳ)2 (4)

Where xi represents the actual value at the ith data point, yi
represents the estimated value at the ith data point, x̄ is the
average of all true values, ȳ is the average of the estimated values,
and N is the total number of data points.

III. RESULTS

This section presents the results of the CNN-LSTM model
in both offline and real-time scenarios. The offline estimation
results of CNN-LSTM, BPNN, and CNN are compared using
various evaluation metrics for quantitative assessment. The in-
volved software is implemented on a 64-bit Windows machine
(Intel(R) Core (TM) i7-4790 CPU @ 3.60GHz 3.60 GHz). The
neural network is run in MATLAB, while the real-time control
of the exoskeleton is carried out using Arduino. In addition, the
raw sEMG data is transmitted to MATLAB via BLE.

1) Offline Training and Estimation: For all subjects (1–10),
the data of the first seven (1–7) are used for modeling, while the
last three (8–10) serve as the additional test sets. And the sEMG
segments used for modeling are 41860 (7×5×1196 = 41860).
During the modeling of BPNN, the proportion of the training set,
test set, and validation set is 70%:15%:15%. During the model-
ing of CNN and CNN-LSTM, the ratio of the training set to the
validation set is 70%:30%. The parameters of BPNN, CNN, and
CNN-LSTM are listed in Table II. Fig. 9 shows the offline angle
estimation under BPNN, CNN, and CNN-LSTM. Fig. 9(a)–(c)
show the offline angle prediction results of participants 8–10,
respectively. The angles obtained by IMU, BPNN, CNN, and
CNN-LSTM are plotted in each figure. Table III records the
quantitative evaluation of offline angle estimation under BPNN,
CNN, and CNN-LSTM. The comparison of prediction effects
shown in Fig. 9(a)–(c) can reflect the inter-subject variability
of sEMG. For Subject 8, the prediction performance of three

Authorized licensed use limited to: Shuxiang Guo. Downloaded on August 29,2023 at 13:16:07 UTC from IEEE Xplore.  Restrictions apply. 



6408 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 10, OCTOBER 2023

TABLE III
QUANTITATIVE EVALUATION OF OFFLINE ANGLE ESTIMATION UNDER BPNN, CNN, AND CNN-LSTM

Fig. 9. Offline angle estimation results under BPNN, CNN and CNN-
LSTM. (a) Angle estimation of subject 8 (b) angle estimation of subject 9
(c) angle estimation of subject 10.

models (BPNN, CNN, CNN-LSTM) varies significantly. For
Subject 9, it is evident that there is a difference in the prediction
effect of the three models. But for Subject 10, there is no apparent
difference in the prediction performance of the three models.
Nevertheless, the quantitative indicators in Table III reveal that
the CNN-LSTM model has a superior prediction effect. Whether
for Subject 8, Subject 9, or Subject 10, the CNN-LSTM model
has the best prediction results, demonstrating its effectiveness
in addressing inter-subject variability.

2) Online Angle Estimation and Real-Time Control of GP-
ULDE: Through the comparison of offline analysis, it is found
that the CNN-LSTM has the best prediction effect. Therefore,
the online angle estimation and real-time control of GP- ULDE
are performed using the trained CNN-LSTM model. Unlike the
offline phase, the online prediction and motor control phases
must take into account the delay time in addition to the evaluation
indicators mentioned above. Fig. 10 shows the online estimation
and motor angle plotted together. The time lag between the IMU
angle and the estimation angle (as well as the time lag between
IMU angle and motor angle) is calculated. It can be seen from
Fig. 10(a) and (d) that there exists no time lag between the IMU
angle and the estimation angle. But the motor angle experiences
an inevitable delay compared to the IMU angle. The time lag is
calculated by a fast linear correlation algorithm. The calculation
result is shown in Fig. 10(e). The phase difference between the
IMU angle signal and the motor angle signal is 6 sampling

TABLE IV
QUANTITATIVE EVALUATION OF ONLINE ANGLE ESTIMATION UNDER

CNN-LSTM

TABLE V
COMPARISON OF PREDICTION PERFORMANCE WITH OTHER METHODS

points. Because the window length of sEMG is 250 ms with
an increment of 50 ms, the interval between the two sequences
is 300 ms (6 × 50 = 300 ms). Table IV records the quantitative
evaluation values for the estimation and motor angles compared
to the IMU angles.

IV. DISCUSSION

In this study, a home-based upper limb rehabilitation system
has been developed. In this system, the GP-ULED serves as
the rehabilitation device, and sEMG-based subject-independent
estimation of continuous movements is realized through the
CNN-LSTM. The combination of the portable upper limb ex-
oskeleton and Myo armband meets the requirements of home-
based rehabilitation. By utilizing CNN-LSTM to extract trans-
ferable features, intention estimation of cross-subject continuous
movements can be realized. The effectiveness of the system is
verified through both offline and online experiments.

Table III reflects the variability among different subjects. The
evaluation criteria of MAE and R2 are taken as examples to
illustrate. Under the BPNN model, MAE values of the three test
subjects (8-10) are 22.7426, 14.4615, and 12.1731, respectively,
and R2 values are 0.7106, 0.8979, and 0.9290, respectively,
which reflects the variability and also indicates that this model
lacks generalization ability among different subjects. Under
the CNN-LSTM model, MAE values of the three test subjects
(8–10) are 12.8540, 13.0131, and 11.3080, respectively, and
R2 values are 0.9250, 0.9274, and 0.9347, respectively, which
indicates that CNN-LSTM can extract transferable features, thus
inhibiting variability and enabling the model to have generaliza-
tion ability among different subjects.

The comparison results of different methods are summarized
in Table V, which shows that the RMSE using the proposed

Authorized licensed use limited to: Shuxiang Guo. Downloaded on August 29,2023 at 13:16:07 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: SUBJECT-INDEPENDENT ESTIMATION OF CONTINUOUS MOVEMENTS USING CNN-LSTM 6409

Fig. 10. Angle error distribution between the estimation angle and IMU angle. (a) Subject 8 (b) subject 9 (c) subject 10.

Fig. 11. Online estimation and motor angle. (a) Estimated angle (b) motor angle (c) motor angle without time lag (d) phase difference between the signal of
estimated angles and IMU angles (e) phase difference between the signal of motor angles and IMU angles (f) phase difference between the signal of motor angles
and IMU angles after time lag elimination.

method in this study is smaller than that reported by Yang et al.
[15] and Zhao et al. [29]. Meanwhile, the R2 of this study is
greater than that of Yang et al. [15] and Zhao et al. [29]. Although
the R2 of this study is larger than that of Ding et al. [30], the
RMSE of this work is smaller than that of Ding et al. [30].
The main reasons are twofold. Firstly, the modeling and testing
data in the study of Ding et al. [30] are from the same subject.
Secondly, the frequency of the sEMG acquisition device is much
higher than that of the Myo armband used in this letter, so that
more details of the sEMG signal can be collected, and better
estimation can be achieved. Fig. 10 shows the distribution of
errors between the estimation angles and IMU angles. It can
be observed that the magnitude of the error angle is consistent
with the trend of the movements, which is also an essential
factor to consider for improving the prediction accuracy in the
future. As shown in Fig. 11, the time delay in this study is 300
ms. It is acceptable according to [31], which recommended the
maximum latency of 300 ms first.

Compared with the results of other research using robot-
assisted devices to facilitate the elbow movements of flexion
and extension, this research considers the requirements of home-
based rehabilitation and the inter-subject variability, and few
studies addressed the inter-subject variability of sEMG signal.
For example, Yang et al. [15] designed an sEMG-based bilateral
training system for upper limb rehabilitation in which the neural
network model was established for each participant. Liu et al. [9]
developed a bilateral upper limb training system for home-based
rehabilitation using an sEMG-driven musculoskeletal model.
Li et al. [17] implemented the sMEG-based user-independent
estimation of continuous movements using the combination of
multisource domain adaptation (MDA) and BPNN. The veri-
fication is currently only done offline due to the delay of the
existing online MDA method, which cannot meet the real-time
control requirements in HRIs.

While this research has its advantages and application poten-
tial for subject-independent home-based upper limb rehabili-
tation, the limitations of this study also need to be discussed.
Firstly, it can be seen from Fig. 10(a) and (d) that there is
no time lag between the IMU angle and the estimation angle.
The sEMG signal is generally generated 30–150 ms before
limb movements, which is one of the reasons for the above
phenomenon. Another reason is that sliding windowing and
moving average filtering can cause the current signal to exhibit
the trend of future signals. But the motor angle has an inevitable
delay compared to the IMU angle. Therefore, there is no delay
in the prediction process, it occurs during the motor control
process. Secondly, although recent studies [27], [28] have shown
that deep neural networks are capable of learning transferable
features, their transferability is limited. Hence, it is vital to
enhance the transferability of task-specific layers. Long et al.
[27] proposed a novel deep adaptation network architecture to
enhance the transferability of features from task-specific layers.
However, it cannot realize online learning, which means that the
network requires a targeted dataset to achieve transferability. He
et al. [32] proposed an online approach for cross-subject emotion
recognition from ECG signals through unsupervised domain
adaptation. The latency of this algorithm is 4.91 seconds, which
is far from meeting the requirements of real-time control in
HRIs. Thirdly, all experiments related to this study are conducted
on healthy subjects, and no experiment is carried out on stroke
patients.

Based on the above discussion, our future study will focus on
improving the transferability of deep neural networks, such as by
adding adaptive layers, and subsequently applying the updated
neural network to scenarios of online estimation and real-time
control. At the same time, the delay of motor control will also
be considered to improve the rehabilitation system and carry out
experiments for stroke patients.
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V. CONCLUSION

In this letter, an upper limb rehabilitation system that takes
into account both the portability of the exoskeleton and the
inter-subject variability of sEMG is established. The upper
limb exoskeleton, the offline training and comparison of esti-
mation results, the online estimation, and real-time control of
the GP-ULED are systematically introduced and analyzed. The
effectiveness of the CNN-LSTM model in achieving subject-
independent estimation of continuous movements has been ver-
ified, and the model is then applied to the real-time control of
the upper limb rehabilitation exoskeleton.
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